Falta de CRM mata!

By: Author Raul MarinhoPosted on
724Views10

Neste post, sobre “cultura de segurança”, eu menciono várias vezes o quanto é importante o CRM para a segurança na aviação. Na verdade, eu acho que deveria ser obrigatório haver um curso desses já para os alunos do PP – eu fiz o meu no meio do PC, e acho que se tivesse feito antes teria evitado algumas situações potencialmente perigosas nos meus voos de instrução. Bem, mas ocorre que ontem eu recebi um e-mail de um amigo (o Salvatore, mecânico da Delta), com um texto que mostra claramente como a falta de um bom CRM foi determinante para o acidente do Airbus 330 da Air France, em 2009. Por isso, gostaria de compartilhar este excelente texto com vocês, publicado originalmente na Popular Mechanics, traduzido pela CAVOK, e editado por mim:

Por mais de dois anos, o desaparecimento do voo Air France 447 no meio do Atlântico, nas primeiras horas de primeiro de Junho de 2009, permaneceu como um dos grandes mistérios da aviação. Como um dos mais modernos aviões simplesmente desapareceu?

Com a maior parte da aeronave e as caixas pretas perdidas a 2 milhas (3,7km) de profundidade no oceano, especialistas foram forçados a especular baseados somente nos dados existentes: um conjunto de mensagens criptografadas enviadas automaticamente da aeronave para o centro de manutenção da aeronave na França. Divulgações da época do acidente indicaram que o avião sofreu um problema técnico – congelamento das sondas pitot (sensores que medem a velocidade do ar) – isso combinado às condições meteorológicas críticas levaram a uma sequencia de eventos que culminou com a queda do avião e a perda de 228 vidas.

Tudo poderia ter descansado nas profundezas do oceano para sempre, mas em Abril de 2011, em uma operação incrível, as caixas pretas do voo AF447 foram encontradas. Até a análise de seu conteúdo, as autoridades francesas responsáveis pela investigação, o BEA, emitiu um relatório onde ampliava as investigações sobre a suposição inicial de falha nas sondas pitot. Então, um quadro claro do que ocorreu naquele voo emerge com a publicação Erreurs de Pilotage (volume 5), escrito pelo piloto e escritor de aviação Jean-Pierre Otelli, que incluiu a transcrição completa da comunicação entre os pilotos durante o voo AF447.

Hoje está claro que realmente o voo AF447 atravessou um conjunto de nuvens e uma tempestade de grande magnitude, as sondas pitot congelaram, e o piloto automático desligou-se. Como consequência da confusão, os pilotos perdem o controle do avião, pois estes reagem incorretamente a perda dos instrumentos de voo e parecem incapazes de compreender a natureza real de suas ações. Nem o tempo, nem o mau funcionamento derrubaram o AF447, nem mesmo uma sequencia de problemas complexos, mas sim o simples e persistente erro por parte de um dos pilotos.

O julgamento humano, claramente, não é formado no vácuo. Pilotos são partes de um sistema complexo que pode aumentar ou diminuir a probabilidade destes cometerem erros. Depois deste acidente, a questão está em entender se treinamento, instrumentos de voo, e procedimentos na cabine podem ser alterados para que os erros presentes neste acidente não se repitam – ou se a presença do fator humano sempre resultará na possibilidade de uma catástrofe. Depois de tudo, os homens no comando do AF447 eram três experientes pilotos que voavam por uma das mais prestigiadas companhias aéreas. Se eles não puderam voar uma aeronave sobre o oceano, então qual companhia aérea poderia afirmar “nossos pilotos nunca fariam o mesmo?”.

Aqui está um resumo do que ocorreu nos últimos minutos de voo do AF447:

À 1h36min, o voo entre na extremidade de uma tempestade tropical. Diferente de outros voos, a tripulação decide voar através deste sistema meteorológico: a tripulação do AF447 não mudou seu plano de voo para evitar o pior da tempestade. A temperatura externa está acima do previsto, não permitindo que o pesado Airbus, ainda cheio de combustível, voe sobre o sistema meteorológico que se forma. Ao invés disso, o AF447 avança para dentro das camadas de nuvens à frente.

À 1:51h, a cabine de comando fica iluminada por um estranho fenômeno elétrico. O copiloto no assento a direita, um jovem pouco experiente de 32 anos, Pierre-Cédric Bonin, pergunta: “O que é isso?”. O capitão, Marc Dubois, um veterano piloto com mais de 11.000 horas de voo, diz a ele: “isso é o fogo de Santelmo, um fenômeno que ocorre com freqüência em tempestades nesta altitude.”

Às 2 horas, o outro copiloto, David Robert, retorna à cabine de comando depois de uma pausa para descanso. Com 37 anos, Robert é mais velho e experiente do que Bonin, com mais do dobro de horas voadas que seu colega. O piloto no comando levanta-se e deixa seu assento à esquerda a Robert. Apesar da menor experiência, o capitão deixa Bonin no comando da aeronave.

As 2:02h, o capitão deixa a cabine de comando para tirar um cochilo. Dentro de 15 min., todos a bordo estarão mortos.

02:03:44 (Bonin) A convergência inter-tropical… olhe, nós estamos nela, entre ‘Salpu’ e ‘Tasil’, e agora, olhe, estamos sobre ela…

A convergência intertropical, ou ITC, é uma área de constantes e severas condições climáticas perto do Equador, que frequentemente gera uma séria de grandes tempestades. Algumas destas tempestades chegam a alcançar a estratosfera. Diferente de outras tripulações voando na mesma região nesta noite, a tripulação do AF447 não estudou este padrão de tempestade e solicitou um desvio contornando a área de atividade mais intensa. (Salpu e Tasil são dois marcadores de posição a serem reportados).

02:05:55 (Robert) Sim, vamos avisar o pessoal lá atrás, e deixá-lo sabendo…

Robert aperta o botão de chamada.

02:05:59 (comissária, escuta no intercom) Sim? Marilyn.

02:06:04 (Bonin) Sim, Marylin, é Pierre aqui na frente… Escute, em dois minutos, vamos entrar em uma área onde as coisas irão se mexer um pouco, um pouco mais do que agora. Vai querer ter cuidado.

02:06:13 (comissária) Ok, então devemos nos sentar?

02:06:15 (Bonin) Bem, acho que não é uma má idéia. Avise aos colegas para ficarem atentos.

02:06:18 (comissária) Sim, ok. Vou aviar a todos aqui atrás. Muito obrigada.

02:06:19 (Bonin) Assim que passarmos por isto, volto a te avisar.

02:06:20 (comissária) Ok.

Os dois copilotos conversam sobre a atípica elevação da temperatura externa, o que os impede de subir a uma altitude mais elevada, e expressam a felicidade de voar um Airbus 330, que apresenta melhor performance em altitude elevada do que um Airbus 340.

02:06:50 (Bonin) Vamos com o sistema de anti-congelamento. É melhor que nada.

Porque voam através das nuvens, os pilotos ligam o sistema de anti-congelamento, para tentar manter o gelo longe de superfícies de voo. O gelo reduz a eficiência aerodinâmica da aeronave, aumenta seu peso, e em alguns casos pode causar a sua queda.

02:07:00 (Bonin) Parece que estamos na última camada de nuvens, está bem.

Neste momento, Robert examina o sistema de radar e verifica que não foi configurado no modo correto. Mudando a configuração, verifica o mapa no radar que estão indo diretamente para uma área de alta intensidade.

02:08:03 (Robert) Você poderia colocá-lo um pouco a esquerda.

02:08:05 (Bonin) Desculpe, o que?

02:08:07 (Robert) Você poderia colocá-lo um pouco a esquerda? Concordamos que estamos em manual, correto?

Bonin, sem avisar, desvia o avião à esquerda. De repente, surge um cheiro estranho, como o de um transformador elétrico, que invade a cabine, e a temperatura rapidamente aumenta. Num primeiro momento, os jovens pilotos pensam existir algo de errado com o sistema de ar condicionado, mas Robert assegura que é um efeito causado pelas condições do tempo ao redor. Bonin parece não estar confortável com a situação. Então, o som do fluxo de chuva sobre a fuselagem se torna mais alto. Isto provavelmente se deve ao acúmulo de cristais de gelo na superfície exterior da fuselagem. Bonin fala que irá reduzir a velocidade da aeronave, e pergunta a Robert se deve ligar o sistema que previne as turbinas de apagarem em situações de grande quantidade de gelo.

Neste momento um alarme soa por 2.2 segundos, indicando que o piloto automático está sendo desligado. A causa é o congelamento dos tubos pitot, montados no exterior da aeronave, que determinam a velocidade do ar. Então, agora os pilotos devem voar a aeronave manualmente.

Observe, no entanto, que o avião não apresenta mau funcionamento mecânico. Apesar da perda dos indicadores da velocidade do ar, tudo funciona perfeitamente. O relatório de Otelli afirma que muitos pilotos de companhias aéreas (inclusive ele) voam manualmente nestas condições em simuladores aéreos, sem muitos problemas. Embora nem Bonin nem Robert nunca tivessem treinamento de como lidar com um indicar de velocidade do ar incerto em altitude de cruzeiro, ou voar manualmente um avião nestas condições.

02:10:06 (Bonin) Eu tenho os controles.

02:10:07 (Robert) De acordo.

Talvez assustados com tudo que aconteceu nos últimos minutos – a turbulência, o estranho fenômeno elétrico, seu colega falhando em contornar a tempestade à frente – Bonin reagiu irracionalmente. Ele puxou o sidestick (manete lateral que comanda a atitude do avião) e iniciou uma subida, apesar de ter conversado a instantes atrás sobre a incapacidade da aeronave de voar mais alto devido às elevadas temperaturas externas.

O comportamento de Bonin é de difícil compreensão para profissionais aviadores. “Se ele está voando nivelado em linha reta e perde o indicador de velocidade do ar, não entendo porque ele puxou o sidestick,” comenta Chris Nutter, piloto de linhas aéreas e instrutor de voo. “O lógico seria realizar os procedimentos de checagem” – isto é, comparar o indicador de velocidade do ar com o copiloto e com outros instrumentos, como indicadores de velocidade em relação ao solo, altitude, configuração dos motores, ângulo de subida. Nestas situações, “iniciamos um processo de avaliação interativo”, explica Nutter, antes de manipular os controles de voo. “Aparentemente, isso não ocorreu.”

Quase imediatamente após Bonin iniciar a subida, o computador de bordo reagiu. Um alarme sonoro alertou a cabine para o fato de estarem deixando o programa de altitude. Então, o alarme de estol começa a soar. Este é uma voz humana sintetizada que repete “Stall!” em inglês, seguido de um incômodo som chamado “cricket”. Estol é uma situação potencialmente perigosa que resulta da perda de velocidade. Em uma situação mais crítica, as asas perdem eficiência em gerar sustentação, e a aeronave começa a perder altitude.

O alarme de estol dos Airbus foi pensado de tal forma a tornar impossível ignorá-lo. Mesmo assim, durante todo o tempo, nenhum dos pilotos citou ou mencionou que o avião estava na iminência de estolar – mesmo tendo o alarme de estol disparado 75 vezes na cabine de comando.

Por todo o tempo, Bonin irá manter os manetes de comando puxados, apesar da orientação em contrário quando recebe um alarme de estol.

02:10:07 (Robert) O que é isso?

02:10:15 (Bonin) Nada bom… Não temos um bom indicador de velocidade.

02:10:16 (Robert) Perdemos a…, a…, a velocidade, então?

O avião sobe subitamente em uma razão de 7.000 pés/min (2.000 m/min). Enquanto ganha altitude, ele perde velocidade, até a velocidade de 93 nós (173 km/h), uma velocidade mais próxima de um Cessna do que de um jato comercial. Robert vê o erro de Bonin e tenta corrigi-lo.

02:10:27 (Robert) Atenção para a velocidade. Atenção para a velocidade.

Ele provavelmente se refere à velocidade vertical. Eles ainda estão subindo.

02:10:28 (Bonin) Ok, ok, estou descendo.

02:10:30 (Robert) Estabilize…

02:10:31 (Bonin) Sim.

02:10:31 (Robert) Desce… estamos subindo… Estamos subindo, então desce.

02:10:35 (Bonin) De acordo.

Graças ao efeito do sistema de anti-congelamento, um dos tubos pitot volta a funcionar. Os monitores na cabine voltam a mostrar os indicadores corretos de velocidade.

02:10:36 (Robert) Desce!

02:10:37 (Bonin) Estamos conseguindo, estamos descendo.

02:10:38 (Robert) Suave!

Bonin libera a pressão do manete de comando, e o avião ganha velocidade e sua ascensão começa a diminuir. Ele acelera a 223 nós (413 km/h). O alarme de estol silencia. Por algum momento, os copilotos tem o controle do avião novamente.

02:10:41(Bonin) Estamos… Sim, estamos subindo.

Ainda, Bonin ainda não abaixou o nariz. Reconhecendo a gravidade da situação, Robert aciona o botão para chamar o Capitão.

02:10:49 (Robert) Diabos, onde ele está?

O avião subiu 2512 pés (765 m) acima da altitude inicial, e apesar disso ele continua subindo em uma taxa de ascensão perigosa, dentro de um aceitável envelope de voo. No entanto, por alguma razão desconhecida, Bonin novamente aumenta a pressão sobre o manete de comando, elevando o nariz do avião e perdendo velocidade. Novamente, o alarme de estol começa a soar.

Os pilotos continuam a ignorá-lo, a razão para isso pode ser que eles acreditavam ser impossível estolar o avião. Não é uma ideia totalmente irracional: os Airbus são aeronaves fly-by-wire: os comandos não alimentam diretamente as superfícies de controle, mas um computador que envia os sinais a atuadores que movem os ailerons, leme, profundores, e flaps. Na maioria dos casos, o computador opera dentro das regras de voo consideradas normais, o que significa que não enviará nenhum comando que implique que a aeronave sai de seu envelope de voo. O computador de controle de voo sob regras normais nunca permitirá o estol da aeronave, afirma um especialista em aviação.

No entanto, uma vez que o computador perdeu os dados de velocidade do ar, o piloto automático se auto-desligou, mudando o regime de voo de “normal” (“normal law”) para “alternado” (“alternate law”), um regime de voo com poucas restrições sobre o que o piloto pode fazer. “Uma vez estando em regime alternado de vôo, você pode estolar a aeronave”, afirma Camilleri.

É pouco provável que Bonin nunca tenha voado este avião em regime “alternado”, ou mesmo entendido as poucas restrições neste modo de voo. De acordo com Camilleri, nenhum dos 17 Airbus 330 da US Airways entrou em regime “alternado”. No entanto, Bonin pode ter assumido que o alarme de estol fosse falso porque deve ter imaginado que o avião nunca removeria suas próprias restrições a estol, o que sabemos, foi o que ocorreu.

02:10:55 (Robert) Diabos!

O outro tubo pitot volta a funcionar normalmente. Os aviônicos na cabine de comando estão todos funcionando normalmente. A tripulação dispõe de todas as informações necessárias para realizar um voo seguro, com todos os sistemas totalmente funcionais. Os problemas que ocorrem deste ponto em diante são creditados puramente ao erro/fator humano.

02:11:03 (Bonin) Estou em TOGA, hein?

A afirmação de Bonin neste ponto oferece uma janela para interpretar seu raciocínio. TOGA é um acrônimo para “Take Off, Go Around” – decole e arremeta. Quando uma aeronave decola ou aborta um pouso (arremete), ela deve ganhar velocidade e altitude com a máxima eficiência possível. Nesta fase crítica do voo, os pilotos são treinados para aumentar a velocidade para o nível de TOGA e elevar o nariz da aeronave para um certo ângulo de inclinação.

Claramente, Bonin está tentando buscar o mesmo efeito: ele deseja aumentar a velocidade e subir para longe do perigo. Porém ele não está ao nível do mar; ele está sob um ar rarefeito a 37.500 pés (11.500 m), Os motores geram menos empuxo nesta condições, e as asas menos sustentação. Inclinar o nariz do avião para um certo ângulo não gera o mesmo resultado de ascensão. Neste caso, pode resultar em uma queda, o que ocorreu.

Enquanto o comportamento de Bonin é considerado irracional, e difícil de entender, é sabido que uma carga psicológica estressante desliga áreas importantes do cérebro responsáveis pela inovação e criatividade. Podemos afirmar que entramos no modo de segurança, onde nossas ações são remetidas a respostas instintivas, as quais somos familiar ou treinamos com frequência. Apesar da exigência dos pilotos praticarem o voo manual em todas suas fases, como parte da rotina de treinamento, eles o fazem normalmente a baixa altitude, na decolagem, pouso, e nas manobras para estas etapas. Então, não é uma surpresa que diante de uma tempestade assustadora, Bonin reverteu suas ações de voo como se estivesse próximo do solo, mesmo esta ação não sendo compatível e adequada àquela situação.

02:11:06 (Robert) Diabos, ele está vindo ou não?

O avião agora atinge sua altitude máxima de voo. Com os motores em sua potência máxima, com o nariz inclinado em 18 graus, ele se move horizontalmente por alguns instantes e depois começa sua queda em direção ao oceano.

02:11:21 (Robert) Nós temos ainda os motores! Inferno, o que está acontecendo? Eu não entendo o que está acontecendo.

Diferente dos manetes de controle dos jatos da Boeing, os manetes (sidesticks) de controle dos Airbus são assíncronos – isto é, se movem independentemente. “Se uma pessoa no assento direito puxa o manete (joystick), a pessoa no assento da esquerda não sente este movimento”, afirma o Dr. David Esser, professor de Ciência Aeronáutica na Embry-Riddle Aeronautical University. “Seu joystick não se move se o outro se mover, diferente dos sistemas tradicionais mecânicos encontrados em aviões de pequeno porte, onde se você move um manete, o outro ao lado se move da mesma forma.” Robert não tinha ideia que, apesar do diálogo sobre descer o nariz da aeronave, Bonin continuou a puxar o manete sob seu controle.

Estes homens falharam em um processo importante chamado “gerenciamento de recursos pela tripulação”, ou CRM (“Crew Resource Management”). Eles falharam essencialmente em cooperar naquela situação. Não estava claro para cada um quem estava no comando e quem era responsável por qual procedimento. Este é o resultado natural de termos dois copilotos voando este avião. “Quando você tem um capitão e um primeiro-oficial na cabine, está claro quem está no comando”, explica Nutter. “O capitão tem a autoridade no comando, ele é o responsável legal pela segurança do voo. Mas quando você coloca dois primeiro-oficiais na cabine, isso altera significativamente as coisas. Você não terá a disciplina tradicional imposta na cabine quando da presença de um capitão.”

A velocidade vertical em direção ao oceano aumenta. Caso Bonin tivesse liberado os controles, o nariz do avião abaixaria e voltaria a ganhar velocidade horizontal. Porém, com sua atitude de manter o manete puxado, mantendo o nariz do avião elevado, a velocidade horizontal foi sendo reduzida de tal forma que os controles de voo não eram mais efetivos. A turbulência continuava a chacoalhar a aeronave, ficando muito difícil manter as asas niveladas.

02:11:32 (Bonin) Diabos, eu não tenho o controle do avião, eu não tenho mais o controle do avião!

02:11:37 (Robert) Esquerda assumindo o comando!

Ao menos, o mais senior dos pilotos (e aquele que parece ter um melhor entendimento da situação) agora tem o controle da aeronave. Infelizmente, ele também parece não saber que agora o avião está estolando, e puxa o manete de controle da mesma forma que Bonin. Embora o nariz da aeronave esteja inclinado para cima, ele está caindo com um ângulo de 40 graus. O alerta de estol continua soando. De qualquer maneira, Bonin retorna ao controle do avião.

Um minuto e meio após a crise começar, o capitão retorna à cabine de comando. O alerta de estol continua soando.

02:11:43 (Captain) O que diabos vocês estão fazendo?

02:11:45 (Bonin) Nós perdemos o controle do avião!

02:11:47 (Robert) Nós perdemos completamente o controle do avião. Nós não entendemos nada… Estamos tentando de tudo…

Neste momento o avião retorna à sua altitude inicial, mas cai rapidamente. Com o nariz inclinado em 15 graus para cima, e uma velocidade horizontal de 100 nós (185 km/h), ele desce a uma razão de 10.000 pés/min (3.050 m/min), num ângulo de 41.5 graus. Ele manterá esta atitude com pequenas variações até se chocar com o mar. Apesar dos tubos pitot estarem funcionando normalmente, a velocidade horizontal a frente é muito baixa – abaixo de 60 nós (111 km/h) –, e os dados de entrada do ângulo de ataque não são mais aceitos como válidos, e o alarme de estol para de soar temporariamente. Isso deu aos pilotos a impressão que a situação estava melhorando, quando de fato era totalmente o oposto.

Outra revelação da transcrição de Otelli é o fato do capitão da aeronave não ter feito nenhuma tentativa física de tomar os controles da aeronave. Deveria Dubois tê-lo feito? Ele certamente entendeu, como um piloto com muitas horas de vôo, a insanidade que seria tomar os controles da aeronave durante um estol. Ao contrário, ele se sentou atrás, entre os dois pilotos.

Isso não é difícil de entender, diz o especialista. “Eles estavam experimentando provavelmente alguma severa desorientação”, afirma Esser. “Em uma situação como aquela, ele provavelmente não desejava piorar a situação, obrigando um dos tripulantes em se levantar e dar seu assento a ele. Atrás dos pilotos, ele estava em uma posição melhor para observar a situação e dar seus comandos.”

Mas de seu assento atrás, Dubois, baseado nos instrumentos a sua frente, não consegue entender o porquê do comportamento do avião. A peça crítica de informação que falta é o fato de alguém estar segurando o manete de controle por todo o tempo puxado para trás. Ninguém comunicou isso a Dubois, e ele também não perguntou.

02:12:14 (Robert) O que você acha? O que você acha? O que devemos fazer?

02:12:15 (Captain) Bem… Eu não sei!

Como o alarme de estol continuando a soar, os três pilotos discutem a situação com nenhuma pista para entender a natureza da ocorrência. Nenhum deles menciona a palavra estol. Como o avião está sendo chacoalhado pela turbulência, o capitão ordena a Bonin a levantar as asas – aviso que não atacará o problema principal. Então eles discutem, de maneira inacreditável, se estão de fato subindo ou descendo, antes de ter concordado que estão realmente descendo. Quando o avião se aproxima de 10.000 pés (3.050m), Robert tenta pegar novamente os controles, e empurra o seu manete para frente, mas o avião está em modo duplo de comando (“dual input mode”), e o sistema equaliza seus comandos com os do Bonin, que continua a puxar o seu manete. O nariz permanece voltado para cima.

02:13:40 (Robert) Suba… suba… suba… suba…

02:13:40 (Bonin) Mas eu mantive o manete para trás todo tempo!

Ao menos, Bonin comunicou aos outros o fato crucial e grave, mas que demonstra sua falta de entendimento da situação.

02:13:42 (Captain) Não, não, não… Não suba… Não, não.

02:13:43 (Robert) Desce, então… Me dê os controles… Me dê os controles!

Bonin libera os controles, e Robert finalmente coloca o nariz para baixo. O avião começa a ganhar velocidade novamente. No entanto, ele continua descendo em um ângulo acentuado. Estão próximos de 2.000 pés (610m), e os sensores da aeronave detectam a proximidade rápida com o solo e mais um alarme dispara. Não existe tempo suficiente para aumentar a velocidade, colocando o nariz do avião para baixo em um mergulho. Sem nenhuma razão, sem avisar seus colegas, Bonin mais uma vez pega os controles e puxa seu manete de comando novamente totalmente para trás.

02:14:23 (Robert) Diabos, nós vamos cair… Isso não pode estar acontecendo!

02:14:25 (Bonin) Mas o que está acontecendo?

02:14:27 (Captain) Ângulo de dez graus…

Exatamente 1.4 segundos depois, o gravador de voz da cabine para.

Conclusão:

A transcrição do voo Air France 447 liberou informações relevantes que devem assegurar que nenhum piloto de companhia aérea deve cometer os mesmos erros novamente. A partir de agora, todos os pilotos de linhas aéreas não terão dúvidas no instante que o alarme de estol soar a uma altitude de cruzeiro. Companhias aéreas ao redor do mundo modificarão seus programas de treinamento para reforçar os hábitos que poderiam ter salvo o voo AF447: prestar atenção nos informe meteorológicos e o que as aeronaves ao redor estão fazendo; deixar bem claro quem está no comando quando são deixados dois copilotos na cabine de comando; entender os parâmetros do regime de voo “alternado” (“alternate law”); e praticar o modo de voo manual em todas as fases de voo.

No entanto, este acidente emerge uma ameaça sutil que pode atormentar a aviação comercial por muito tempo, algo que, ironicamente, nasceu para tornar a aviação mais segura. Através dos anos, as companhias aéreas vêm criando mecanismos de controle de voo automáticos. Esta ação tem o potencial de diminuir grande quantidade de incertezas e perigos associados à aviação. Por outro lado, remove também importantes informações necessárias da atenção da tripulação. Enquanto os aviônicos da aeronave controlam parâmetros cruciais como localização, velocidade, inclinação, o homem ou mulher na cabine pode se distrair com outras coisas. Porém, quando problemas subitamente aparecem, e o computador de bordo decide que não pode mais cooperar – em uma noite escura, talvez com turbulência, longe do solo – o homem ou mulher na cabine se encontrará em uma situação de assumir o comando da aeronave com uma noção incompleta do que está acontecendo. Eles irão desejar saber: quais instrumentos são confiáveis, e em quais ele pode acreditar? Qual é a mais importante ameaça ao voo? O que realmente está acontecendo? Infelizmente, a grande maioria dos pilotos tem pouca experiência em encontrar as respostas.

10 comments

  1. Rogerio
    5 anos ago

    Olá Raul. Lendo o post, consegui me “enduvidar” em uma pasagem do texto. Sei que você não é especialista em aviação, mas me responda com a sua opinião, seja ela “sua mesmo” ou lógica. No texto diz que o copiloto que tinha mais experiencia era o da direita, mas no revezamento, o menos experiente foi para a esquerda. Em uma situação semelhante a deste voo, quem é que deve assumir os comandos? A disposição dos assentos influencia nesta decisão?
    EX: “Ah! Eu estou no lugar do comandante por isso eu que vou pilotar o avião.”. Entendeu?

    • Raul Marinho
      5 anos ago

      Pelo que aprendi no Jet Training, independente de quem senta aonde, o que importa é o que os tripulantes combinaram no inicio do vôo.

      Enviado via iPad

  2. Jonatas
    5 anos ago

    Faz tempo que quero fazer o CRM, você recomenda algum lugar pra fazer esse curso, Raul?

    • Raul Marinho
      5 anos ago

      Vai ter um na LABACE-2012 (eu fiz na LABACE-2010), mas esse é um curso oferecido pelas empresas, vc faz qdo for contratado como piloto.

    • Lucas Neves
      5 anos ago

      Jonatas ja vi alguns aeroclubes oferecerem esse curso!

      Raul concordo 110% com voce que issp deveria ser materia obrigatoria no PP, estou fazendo o meu curso teorico agora e vemos diversas bobagens com uma importancia bem inferior ao CRM!! Mas e isso ai, somos ensinados a passar na banca, temos que aprender a pilotar com a experiencia mesmo!

      • Raul Marinho
        5 anos ago

        Que aeroclube oferece curso de CRM? Em que condições? Vc poderia detalhar um pouco mais sobre isso?

  3. Roberto Lima
    5 anos ago

    Impressionante! Fiquei pasmo com tal relatório sobre os fatos. A falta de treino em situações d emergência me pareceram cruciais. Um comandante deixar a cabine no início de uma tempestade ou zona de perigo, penso, foi impróprio. Eu, para citar um exemplo distante, jamais deixei meu veleiro nas mãos de qualquer tripulante nas situações de maior risco. E um veleiro é lento, oferece um risco muito menor. E em algumas vezes foi extremamente acertada minha atitude.
    Agora, imagino que realmente a dificuldade em saber, nesta situação, quais são afinal os instrumentos a serem acreditados, é um terror. Se tudo a que o piloto está acostumado deixa de funcionar (mesmo que por padrão) e os demais instrumentos podem também não estar correspondendo à realidade, tudo fica muito complicado.
    Fiquei em choque durante a leitura, me senti dentro do avião, vendo os dois pilotos perdidos. E impotente.

  4. Realmente, a falta de CRM é clarissíma e foi determinante. Mas, além da ausência do CRM, o que chama atenção neste acidente é o comportamento dos pilotos em atitudes críticas, sobretudo a de Bonin. outra questão é a “cadeia de eventos”, sabemos que um acidente dificilmente acontece por um evento isolado, e sim por uma série de eventos, tais como erros, atitudes, opniões equivocadas, o próprio comportamento, falta de treinamento específico e etc. neste caso, para mim, novamente ficou muito claro que esta cadeia infelizmente aconteceu.

  5. Juliano Genari
    5 anos ago

    Não tinha lido essa transcrição completa ainda, só pedaços, realmente CRM é indispensável, se formos para o outro extremo vemos isso também, por exemplo o acidente do rio hudson, os caras perderam os dois motores na decolagem em uma das áreas mais populosas do planeta (eu me arrisco a dizer) e todos sobreviveram pelo CRM impecavel dos pilotos e a grande habilidade do comandante, naquele acidente do triple seven em heathrow também é outro ótimo exemplo de que um bom CRM pode pode salvar o dia.

Deixe uma resposta para Juliano Genari Cancelar resposta